Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors.

نویسندگان

  • Regina Nogueira
  • Luís F Melo
چکیده

In this work the question was addressed if in nitrite-oxidizing activated sludge systems the environmental competition between Nitrobacter spp. and Nitrospira spp., which only recently has been discovered to play a role in these systems, is affected by the nitrite concentrations. Two parallel chemostats were inoculated with nitrifying-activated sludge containing Nitrospira and operated under identical conditions. After addition of Nitrobacter to both chemostats, the nitrite concentration in the influent of one of the chemostats was increased such that nitrite peaks in the bulk liquid of this reactor were detected. The other chemostat served as control reactor, which always had a constant nitrite influent concentration. The relative cellular area (RCA) of Nitrospira and Nitrobacter was determined by quantitative fluorescence in situ hybridization (FISH). The nitrite perturbation stimulated the growth of Nitrobacter while in the undisturbed control chemostat Nitrospira dominated. Overall, the results of this experimental study support the hypothesis that Nitrobacter is a superior competitor when resources are abundant, while Nitrospira thrive under conditions of resource scarcity. Interestingly, the dominance of Nitrobacter over Nitrospira, caused by the elevated nitrite concentrations, could not be reverted by lowering the available nitrite concentration to the original level. One possible explanation for this result is that when Nitrobacter is present at a certain cell density it is able to inhibit the growth of Nitrospira. An alternative explanation would be that the length of the experimental period was not long enough to observe an increase of the Nitrospira population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria.

Oxidation of nitrite to nitrate in aquaria is typically attributed to bacteria belonging to the genus Nitrobacter which are members of the alpha subdivision of the class Proteobacteria. In order to identify bacteria responsible for nitrite oxidation in aquaria, clone libraries of rRNA genes were developed from biofilms of several freshwater aquaria. Analysis of the rDNA libraries, along with re...

متن کامل

Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration

The conditions present in both in vitro and in vivo ecosystems determine the microbial population harbouring it. One commonly accepted theory is that a species with a high substrate affinity and low growth rate (k-strategist) will win the competition against a second species with a lower substrate affinity and higher growth rate (r-strategist) if both species are subjected to low substrate conc...

متن کامل

Transcriptional response of nitrifying communities to wetting of dry soil.

The first rainfall following a severe dry period provides an abrupt water potential change that is both an acute physiological stress and a defined stimulus for the reawakening of soil microbial communities. We followed the responses of indigenous communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria to the addition of water to laboratory incubatio...

متن کامل

Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite.

The prerequisite to the development success of the novel mainstream processes partial nitritation/anammox is the out-selection of nitrite oxidizing bacteria (NOB). A recent study suggested that this could be achieved through NO production by ammonium oxidizing bacteria under cyclic oxic-anoxic conditions. Indeed, it is known that among NOB, Nitrobacter species are reversibly inhibited by NO. Ho...

متن کامل

Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 2006